
CHANG ET AL. VOL. 5 ’ NO. 9 ’ 7669–7676 ’ 2011

www.acsnano.org

7669

August 23, 2011

C 2011 American Chemical Society

Short-Term Memory to Long-Term
Memory Transition in a Nanoscale
Memristor
Ting Chang, Sung-Hyun Jo, and Wei Lu*

Department of Electrical Engineering and Computer Science, University of Michigan, Michigan 48109, United States

A
memristor1�3 is a two-terminal de-
vicewhoseconductancecanbemodu-
lated by external inputswith amemory

effect due to internal state changes. Its
concept1 was first proposed 40 years ago
andwas recently linked to physical devices.2

Like other nonlinear devices, a memristor is
controlled by a (or a set of) internal state
variable(s) which is in turn modulated by
input signals. However, for a memristor the
input signals at a given moment only de-
termine the time derivative of the state
variable, and the device state can be suffi-
ciently determined only after knowing the
history of the inputs. Mathematically, a
memristor device is described by a set of
equations that includes a current equation
(eq 1) and a rate equation (eq 2):3

i ¼ G(w, v)v (1)

dw=dt ¼ f (w, v) (2)

Here G is the conductance linking the
current and voltage, w is the internal state
variable discussed above, and f is a func-
tion describing the change of w as a func-
tion of inputs and the current state. We
note strictly speaking that eqs 1 and 2
describe a general class of memristive
devices,3 and here we use the term mem-
ristor to represent this general class of
devices simply for the convenience of dis-
cussion without losing mathematical rigor-
ousness. Despite its deceivingly simple
two-terminal structure, a memristor can
exhibit very complex behaviors when dif-
ferent terms are incorporated into the cur-
rent equation and, in particular, the rate
equation. For example, it has been con-
cluded that all two-terminal nonvolatile
memory devices based on resistive switch-
ing effects, that is, resistive random access
memories (RRAM), are essentially memris-
tors, regardless of materials or physical
mechanisms utilized.4

The flexibility and generality of the mem-
ristor model allow the device to be used in a
wide range of applications. As an example,
RRAM has been studied as a leading candi-
date in nonvolatile memory applications5

as a replacement for the flash memory
technology due to attributes such as high
density,6,7 fast operation,8,9 low power,8 and
CMOS compatibility.9 Digital memory de-
vices have been achieved in various materi-
al systems,5,7,10,11 some of which also show
multilevel switching,8,9,12,13 allowing further
increase of storage density. Recently, mem-
ristors have also been studied in biologically
inspired neuromorphic circuits.14�17 Impor-
tant synaptic learning rules such as spike-
timing dependent plasticity (STDP) have
already been demonstrated.15�17 However,
to build successful artificial neural networks,
a number of important synaptic functionalities
remain to be achieved. One such example is
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ABSTRACT “Memory” is an essential building block in learning and decision-making in

biological systems. Unlike modern semiconductor memory devices, needless to say, human memory

is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory

storage for more important or more frequently accessed pieces of information and is thought to be

necessary for individuals to adapt to new environments. Eventually, only memories that are of

significance are transformed from short-term memory into long-term memory through repeated

stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor

device bears striking resemblance to memory loss in biological systems. By stimulating the

memristor with repeated voltage pulses, we observe an effect analogous to memory transition in

biological systems with much improved retention time accompanied by additional structural

changes in the memristor. We verify that not only the shape or the total number of stimuli is

influential, but also the time interval between stimulation pulses (i.e., the stimulation rate) plays a

crucial role in determining the effectiveness of the transition. The memory enhancement and

transition of the memristor device was explained from the microscopic picture of impurity

redistribution and can be qualitatively described by the same equations governing biological

memories.

KEYWORDS: memristor . memory . retention . training . transition . neuromorphic
system . synapse
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“memory”. Unlike modern semiconductor memory
devices, needless to say, human memory is by no
means eternal. Understanding how the memory is
strengthened and transformed is an intensively stu-
died field, and in numerous studies on biological
systems it has been found that the rate of stimulation
(i.e., the time interval between stimulating pulses)
plays a critical role.18,19 Here we show that similar
effects, including memory loss, memory transition,
and the critical role of stimulation rate on the transition
process, can be achieved in memristor devices. These
demonstrations help pave the way of building bioin-
spired neuromorphic systems based on memristors.

RESULTS AND DISCUSSION

The memristor devices we study here are based
on oxygen vacancy (Vox) movement inside a WOX

thin-film.20,21 In a previous work,21 we have reported
memristive effects obtained in such devices and pre-
sented a model based on eq 1 and eq 2 to describe the
device behavior. Briefly, the memristive effects shown
in Figure 1a are caused by the redistribution of oxygen
vacancies near the WOx/bottom-electrode interface.
The oxygen vacancy-rich regions effectively form con-
ducting channels as schematically illustrated in Figure 1b,
and the device conductance can be increased or
decreased by the creation or disruption of new parallel
channels (or equivalently, changing the overall area of
the conducting regions) by the movement of oxygen
vacancies. More detailed discussions including quanti-
tative modeling can be found in ref 21. In addition,
by introducing a spontaneous diffusion term in addi-
tion to the field-assisted drift term to describe oxy-
gen vacancy motion,21 we can not only explain the

Figure 1. Memristor retention loss compared tomemory loss. (a) DC I�V curves of amemristor studied here. Positive voltage
sweeps (numbered 1�5, þ1.2 V, 2 V/s) and negative voltage sweeps (numbered 6�10, �1.2 V, 2 V/s) increase and decrease
thememristor conductance continuously, respectively.Overlap is seenon the positive side (green loops). The top andbottom
insets are the SEM image of thememristor device (scale bar: 3 μm) and the cross section viewof device structure, respectively.
(b) Schematic illustration of oxygen vacancy diffusion in the memristor device. (c) A retention curve of the memristor. (d) A
forgetting curve of human memory replicated and refitted from ref 28. (e) Schematic illustration of synaptic plasticity
modulation between the axon (presynaptic) and the dendrite (postsynaptic).
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pinched-hysteresis loops but also account for the over-
laps observed in the hysteresis loops, as evident in
Figure 1a and also reported in other oxide-based
memristors.22 Qualitatively, the effect of diffusion can
be explained with the aid of Figure 1b; when there are
relatively few Vox in the switching layer, the sponta-
neous, random motion of the Vox can cause the con-
ductive channels to be disrupted, and bring the device
back to a less conductive state. Experimentally, this
effect is reflected as loss of retention for the high-
conductance state.
In the following, we show that the retention loss in

the memristors bears remarkable similarities to mem-
ory loss in biological systems. Quantitatively, we find it
suitable to model the spontaneous retention loss of
the memristor by a stretched-exponential function
(SEF)23,24 which has been commonly used to describe
electronic or structural relaxation in disorderedmateri-
als such as glasses, polymers, or other dielectrics. For
example, hydrogen diffusion in R-Si25 and defect
diffusion and hopping transport in complex con-
densed-matter systems26 have been shown to agree
well with thismodel. SEF, also known as the Kohlrausch
law, is written as

φ(t) ¼ I0 exp[ � (t=τ)β] (3)

where φ(t) is the relaxation function, τ is the character-
istic relaxation time, I0 is the prefactor, and β is the
stretch index ranging between 0 and 1. The stretched-
exponential behavior originates from the wide distri-
bution of activation energies and the associated wide
range of relaxation times among different relaxation
processes in a disordered system. Thus, τ and β in eq 3
jointly account for the collective behavior of all possible
relaxation processes for Vox in the memristor system.
Examining eq 3, one expects an abrupt drop when

t < τ, followed by a much slower decay when t . τ. A
brief description for human memory indeed coincides
with this tendency, “a rapid initial decline is usually
followed by a long, slow decay”.27 To further demon-
strate the resemblance between the retention of the
memristor and that of the human memory, we did the
following test. We stimulated the memristor with short
voltage pulses and recorded the retention data by
reading the current with low voltage pulses every
second for 3 min (Figure 1c, dots). The retention data
are then fitted to SEF (Figure 1c, solid line). For com-
parison, Figure 1d shows the experimental data (dots)
describing human memory loss28 which are also fitted
to SEF (solid line). Here, probability of recall is ameasure
of how successful a person can recall something
remembered in the past after a period of time.
Neurobiologically, memory is thought to be closely

associated with synaptic weights, the strength of
synaptic connections.29 A simple schematic of a sy-
napse between a pre- and a postsynaptic neuron is
shown in Figure 1e. Strengthening and weakening of

synaptic weights are found to be governed by the
concentrations of ionic species (e.g., Ca2þ, Naþ, Mg2þ,
and Kþ) which activate/inhibit the release of neuro-
transmitters and receptors with certain timing
constraints.30,31 It can then be argued that memory
decay involves amultitime constant relaxation process.
Similar arguments can also be made by examining the
memory trace network. If one views human memory
trace as a chain consisting of numerous links, where
one broken link leads to the failure of the entire chain
and causes the memory to become inaccessible,32 it is
natural to describe the memory loss with the Weibull
distribution, which is widely used for failure analysis (or
equivalently, survival analysis). Mathematically, the
cumulative Weibull distribution is just a complemen-
tary function of SEF (see Supporting Information). In
fact, there have been examples32,33 of psychologists
characterizing memory retention with the exponential-
power function, a synonym for SEF.
Undoubtedly, what mathematical function best por-

traysmemory retention is a hot debate,27 and the exact
shape strongly depends upon the types of memory
and experimental methods and is beyond the scope of
this paper. However, if one assumes the simple picture
that memory loss can be explained microscopically by
the synaptic modifications with different time scales
and macroscopically by the failure of memory trace
networks, it is then perhaps not surprising that both
memory loss and memristor retention loss can be
described to first order by the same phenomenological
equation (e.g., eq 3).
In biological systems, short-term memory (STM)

generally lasts from seconds to tens of minutes; on
the contrary, long-termmemory (LTM) lasts from a few
hours to days or weeks, sometimes even to a lifetime.35

Figure 2a shows a simplified illustration of the multi-
store memory model;36 STM can only be sustained by
constantly rehearsing the same stimulus, while LTM,
despite the presence of natural forgetting, can be
maintained for a much longer period of time without
follow-up stimuli. The transition from STM to LTM is
also through repetitions (as in rehearsal) but in this
case, is a much more intricate process involving many
molecular mechanisms and structural changes at var-
ious cellular sites/levels.37 This entire, complicated
process is termed consolidation38 and will be dis-
cussed later. Below we show that a phenomenon
similar to the STM-to-LTM transition can be achieved
in a memristor upon repeated stimulations, with sig-
nificant improvements in retention time (∼ 20�) and a
strong dependence on the time interval of the stimuli,
analogous to the observed effects in biological
systems.
The competing effect of memory loss and memory

strengthening upon the application of stimuli is
clearly observed in Figures 2b�d. In this study, we
applied five consecutive stimulation voltage pulses
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(amplitude =þ1.3 V, duration = 1ms, period = 200ms)
and constantly monitored the memristor current, as
shown in Figure 2b (see Methods). A low read voltage
of 0.3 V was used to minimize disturbance on device
conductance (Supporting Information Figure S1).
Figure 2c shows that upon the application of each
stimulation pulse, the device conductance is first en-
hanced, followed by a decay due to spontaneous
diffusion discussed earlier. However, when the time
interval between the stimulation is relatively short,
(e.g., 199 ms in Figure 2b), an overall increase of the
memristor conductance can be observed despite the
spontaneous decay (Figures 2c and 2d). This is because
the idle time between the stimulation pulses is not
long enough for the memristor to relax to its initial
state, resulting in a net conductance increase. We note
this observation is akin to well-studied biological
processes;paired-pulse facilitation (PPF)18 and post-
tetanic potentiation (PTP).19 More discussions on the
effects of stimulation rate will be provided later.
Interestingly, not only is the amplitude of the mem-

ristor conductance improved upon repeated stimula-
tion, the retention time also improves significantly with
stimulation. To verify this effect, we applied stimuli of
identical voltage pulses with fixed height, width, and
pulse-to-pulse interval (see Methods). Different num-
bers of stimulations (N = 5 to N = 40 in steps of 5) were
applied to the samememristor device starting from the
same initial state, and retention curves were recorded

right after the last stimuli in each stimulation series.
Figure 3a shows results obtained from tests after 5,
10, ..., 35, and 40 stimuli, along with fittings using eq 3.
Both the retention time (represented as τ in eq 3) and
the synaptic weight (represented as I0 in eq 3) can then
be obtained from the fitting. Figure 3b shows the
retention time (τ) plotted with respect to the number
of stimulations (N). An obvious improvement of τ with
repetitive stimulation can be observed. Overall, τ is
increased by approximately 20-fold and slightly satu-
rates beyond 20 repetitions. As a result, it seemsnatural
to suggest twomemory regimes exist in thememristor
device, consisting of a regime with short τ ≈ few
seconds and sensitive to additional stimulations, and
another regime with much longer τ ≈ minutes and
relatively insensitive to additional stimulations. Also
plotted in Figure 3b is the synaptic weight (I0) . A similar
trend can be found for τ and I0 with increasing N. The
twomemory regimes and the transition between them
in the memristor device can be schematically ex-
plained with the aid of Figure 3c. With the addition of
repeated stimulation, a higher concentration of Vox is
moved into the switching layer, and the lateral diffu-
sion of Vox eventually balances each other out and has
a much lower probability to break the conducting
paths, and as a result the retention time improves
along with the memristor conductance until the time
when significant Vox is stored and the retention time
and the conductance saturates. We note similar effects

Figure 2. Memory enhancement with repeated stimulation. (a) Schematic of the multistore memory model. (b) The voltage
profile applied to the memristor, consisting of five þ1.3 V, 1 ms pulses and a constant þ0.3 V read voltage. (c) The
corresponding current through thememristor data recorded continuously throughout the test. The spontaneous decay after
each pulse and the overall conductance enhancement can be observed. (d) A close-up view of the rectangular area in panel c
highlighting the competing effects of memory enhancement and spontaneous decay.
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are well-known in the STM-to-LTM transition in biolo-
gical systems.35,37 Formation, stabilization, and persis-
tence of LTM are supported by experimental evidence
of the growth of new synaptic connections and den-
drite size/shape change, adding more pathways for
synaptic transmission. LTM still fades with time, indi-
cating that synaptic connections retract with time, but
at a much slower pace than the decay during STM.
Considering these similarities, we argue that the key
attributes of the STM-to-LTM transition process have
been demonstrated in the memristor device including
the significant increase in memory retention after
repeated stimulation and the resulting structural
change, as discussed above.
We further investigated in detail how different sti-

mulation conditions affect the outcome of thememory
transition. It is obvious that pulse amplitude and

duration are important factors that can affect the
transition (Supporting Information, Figure S2). How-
ever, a less obvious but biologically important effect is
that the transition is strongly dependent on the stimu-
lation rate (equivalently, time interval between stimu-
lation pulses) (Supporting Information, Figure S3).18,19

To examine the effect of stimulation rate on the
memristor, we again used identical pulses as stimuli
but fixed the number of stimulation at N = 10 and
varied only the interval between stimuli (Δt), from as
short as 15 ms to as long as 10 s (see Methods). This
configuration ensures that the total flux (e.g., time
integral of the applied voltage) applied to the mem-
ristor remains fixed, with the only varying parameter
being the stimulation rate.
Figure 4a shows the response of the memristor

to different stimulation rates. Here the memristor

Figure 3. STM-to-LTM transition. (a) Memory retention data recorded after different numbers of identical stimuli (dots) and
fitted curves using the SEF (solid lines). The data are scaled by a prefactor I0. (b) Characteristic relaxation time (τ) obtained
through the fitting in panel a and the prefactor (I0) plottedwith respect to the number of stimulations (N). (c) Schematic of the
structural change to thememristor corresponding to the improved retention. After repeated stimulation, there are sufficient
Vox in the switching layer that lateral diffusion effectively cancels out, resulting in much improved retention along with the
increase in conductance (synaptic weight).
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conductance (represented by the current of I1, I2, ..., I10
read at low voltage) was recorded immediately after
each stimulation pulse, and different pulsing condi-
tions are represented by different colors and symbols.
For Δt = 10 s, barely any increase in current is seen,
whereas for Δt = 15 ms, the upward trend is apparent.
This effect ismore clearly illustrated in Figure 4b, where
we plot the current increase (ΔI) for different pulsing
conditions. Here ΔI is calculated by offsetting the
current (IN, N = 1, 2, ..., 10) by I1. The measurements
were repeated five times to minimize fluctuations in
data, with solid marks and error bars in Figure 4b
representing themean and standard deviation, respec-
tively. A clear dependence of the conductance en-
hancement on the stimulation rate can be observed
in Figure 4b, with a high stimulation rate being the
most effective and low stimulation rate being the least
effective. To quantify the conductance enhancement,

we plot (I2 � I1) and (I10 � I1), which represent,
respectively, the experimental conditions for PPF and
PTP used in biological studies, for each interval condi-
tion in Figure 4c. For comparison in Figure 4d we plot
similar rate-dependent effects observed in biological
systems. For PPF,18 it was found that in the granule/
Purkinje cell synapse there is an elevation in respon-
siveness for the second pulse when two pulses are less
than 1 s apart, as illustrated by the green curve in
Figure 4d. Similarly, studies on frog neuromuscular
junctions showed that the magnitude of facilitation
after repetitive stimulation (N = 2, corresponding to
PPF and plotted as the yellow curve; or N = 10, corre-
sponding to PTP and plotted as the blue curve)19,38

also exhibits a strong dependence on the stimulation
interval (see Methods). The reason for the rate depen-
dence in biological systems can be briefly explained as
the following. A stimulus (action potential) at the

Figure 4. Dependence of the transition efficiency on stimulation rate. (a) Current through the memristor recorded after each
stimulation pulse, at different pulse interval conditions. (b) Current increase (ΔI) after every stimulus plotted against pulse
number for different pulse interval conditions. Each measurement was repeated five times. Solid marks and error bars
represent the mean and standard deviation (SD), respectively. (c) Extracted I2 � I1 and I10 � I1, representing PPF and PTP,
versus the interval of the stimulation pulses (in milliseconds). Inset shows the voltage profile used for this measurement. The
lines are simply guides to the eyes. (d) Similar effects on stimulation rates observed in biological systems, showing data for
PPF (green lines, adapted from ref 18 and yellow diamonds, calculated using the approach provided in ref 38) and PTP (blue
dots, calculated using the approach provided in ref 38).
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presynaptic neuron permits calcium influx that initiates
the release of neurotransmitters, thereby temporarily
enhancing synaptic transmission. Once the stimulus is
terminated, it requires a finite time for the residual
Ca2þ to decay to its equilibrium level. Hence, if another
identical stimulus succeeds shortly after this stimulus,
the response of the synapse will be enhanced, as in
PPF. In the same fashion, if many stimuli follow closely
one after another, synaptic transmission will progres-
sively growwith the increasing number of stimuli, as in
PTP. In thememristor device, similar competing effects
exist between the stimulation pulses and the diffusion
of Vox, and lead to the similar rate dependence ob-
servations. These comparisons again verify the feasi-
bility of using memristors to emulate memory
transitions for neuromorphic systems.

CONCLUSION

In summary, we have successfully demonstrated an
effect analogous to STM-to-LTM transition in a nano-
scale memristor device. The pronounced similarity
between ion diffusion and memory decay is explained
by the stretched-exponential relaxation that reason-
ably correlates physical mechanisms to both phenom-
ena. We showed that the memristor device retention
can be improved with the application of repeated
stimulations in a fashion similar to the STM-to-LTM
transition in biological systems. In addition, we verified
that not only the shape or the total number of stimuli
is influential, but also the interval between repetitions
also plays an important role in determining the

effectiveness of the STM-to-LTM transition. Considering
memory is an essential building block in learning and
decision-making, the demonstration of such function-
alities in a nanoscale memristor synapse is crucial for
the realization of neuromorphic systems and artificial
neural networks.
More strictly, memory consolidation in biological

systems is a complex process comprising synaptic con-
solidation, system consolidation, and reconsolidation.39

Themost importantphysiologicalmechanismunderlying
synaptic consolidation is long-term potentiation (LTP) by
which strong and long-lasting synaptic connections are
formed.40 Whereas synaptic consolidation takes place
from minutes to hours after a learning or stimulation
event, system consolidation occurs days to weeks after
the event, and during this period of timebrain circuits are
reorganized so that memories become stable within the
system. However, memories become labile and unstable
after recalls, and reconsolidation is necessary to stabilize,
modify, and strengthen LTM. Oftentimes, the formation
of STM (rehearsal) and LTM (consolidation) involves not
only molecular and cellular reactions, but also cogni-
tive and psychological behaviors.41,42 Whether in neu-
robiology or in psychology, details of these processes
are still under debate. Hence, we would like to empha-
size that our objective of this study is to demonstrate
phenomena observed in a memristor synapse that
exhibit similar effects to the STM-to-LTM transition in
biological systems, instead of trying to form strict one-
to-one correlation with biological systems at the
molecular or cellular level.

METHODS
Device Fabrication. The memristor device consists of a W

bottom electrode, a Pd top electrode, and a WOX film sand-
wiched in between. Tungsten oxide is formed by rapid thermal
annealing (RTA) at 400 �C. All lithography steps are performed
with electron-beam (Raith 150), and the dimension of the
junction is approximately 130 nm � 130 nm. A scanning
electronmicroscope (SEM) image and a cross-section schematic
of the device are shown in the insets of Figure 1a.

Measurement and Analysis. To obtain the data in Figure 2, we
applied stimulation pulses to the top electrode of thememristor
through an arbitrary function generator (Tektronix AFG3101).
The current was measured with a current preamplifier, and the
data were captured with an oscilloscope (Tektronix TDS 3032B)
with the bottomelectrodegrounded. The applied signal is shown
in Figure 2b and includes a constant read voltage of 0.3 V and five
voltage pulses (amplitude = þ1.3 V, duration = 1 ms, period =
200ms). Pulseswith periods of 100 and 300ms are also used, and
the results are shown in Supporting Information, Figure S3.

To obtain the STM-to-LTM transition data in Figure 3, re-
peated stimulation pulses (amplitude = þ1.3 V, duration = 0.4
ms, pulses interval = 60 ms) were applied to the memristor.
Retention curves were obtained by reading the current every
second withþ0.5 V, 8 ms read pulses immediately after the last
stimulus in the series. This measurement was performed with
custom-built LabWindows/CVI programs. All retention curves
were then normalized by their own prefactor (I0), which is the
difference in current right before and right after the series of
stimuli in each case. The normalized retention curves were then

fittedwith eq 3with a fixed β = 0.45, keeping τ as the only fitting
parameter for each case. β is a material-dependent parameter,
thus it is reasonable to assume β as a constant in the same
device under normal operations.

To obtain the rate-dependent transition experiment results
in Figure 4, we fixed the number of stimulation and the shape of
the stimulation pulses, and only varied the stimulation interval.
The interval being tested were 15ms, 25 ms, 50 ms, 100ms, 250
ms, 500 ms, 1 s, 2 s, 4 s, and 10 s; þ1.3 V, 0.3 ms voltage pulses
were applied as stimuli. Aþ0.5 V, 8ms read pulse followed each
stimulus pulse by a 3 ms delay. The voltage profile is shown in
the inset of Figure 4c.

The green curve in Figure 4d was adapted from an expo-
nential decay function of PPF between the granule/Purkinje cell
synapse,18 where the amplitude and the time constant were
153% and 203 ms, respectively. This curve describes how much
the response to the second pulse is facilitated comparing to the
first pulse with respect to the pulse-to-pulse interval. The blue
and yellow marks in Figure 4d were calculated using the model
in ref 38 using scheme II, and all the parameters used in the
calculation were obtained from the legend of Figure 4 in the
same reference.
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Supporting Information Available: Derivation of the
stretched-exponential function from the Weibull distribution
and effects of the stimulation pulse height, width, and interval
on the retention time. This material is available free of charge
via the Internet at http://pubs.acs.org.
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